Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Ecology ; : e4299, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650359

ABSTRACT

Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.

3.
Glob Chang Biol ; 29(24): 6900-6911, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804212

ABSTRACT

The global decline of terrestrial species is largely due to the degradation, loss and fragmentation of their habitats. The conversion of natural ecosystems for cropland, rangeland, forest products and human infrastructure are the primary causes of habitat deterioration. Due to the paucity of data on the past distribution of species and the scarcity of fine-scale habitat conversion maps, however, accurate assessment of the recent effects of habitat degradation, loss and fragmentation on the range of mammals has been near impossible. We aim to assess the proportions of available habitat within the lost and retained parts of mammals' distribution ranges, and to identify the drivers of habitat availability. We produced distribution maps for 475 terrestrial mammals for the range they occupied 50 years ago and compared them to current range maps. We then calculated the differences in the percentage of 'area of habitat' (habitat available to a species within its range) between the lost and retained range areas. Finally, we ran generalized linear mixed models to identify which variables were more influential in determining habitat availability in the lost and retained parts of the distribution ranges. We found that 59% of species had a lower proportion of available habitat in the lost range compared to the retained range, thus hypothesizing that habitat loss could have contributed to range declines. The most important factors negatively affecting habitat availability were the conversion of land to rangeland and high density of livestock. Significant intrinsic traits were those related to reproductive timing and output, habitat breadth and medium body size. Our findings emphasize the importance of implementing conservation strategies to mitigate the impacts caused by human activities on the habitats of mammals, and offer evidence indicating which species have the potential to reoccupy portions of their former range if other threats cease to occur.


Subject(s)
Ecosystem , Livestock , Animals , Humans , Conservation of Natural Resources , Mammals , Forests
4.
Curr Biol ; 33(13): R706-R707, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37433268

ABSTRACT

William Laurance and colleagues alert to the dangers of limiting the freedom of conservation science in Indonesia and elsewhwere.


Subject(s)
Conservation of Natural Resources , Indonesia
5.
Front Public Health ; 11: 1106083, 2023.
Article in English | MEDLINE | ID: mdl-37228739

ABSTRACT

Sustainable nutrition represents a formidable challenge for providing people with healthy, nutritious and affordable food, while reducing waste and impacts on the environment. Acknowledging the complexity and multi-dimensional nature of the food system, this article addresses the main issues related to sustainability in nutrition, existing scientific data and advances in research and related methodologies. Vegetable oils are epitomized as a case study in order to figure out the challenges inherent to sustainable nutrition. Vegetable oils crucially provide people with an affordable source of energy and are essential ingredients of a healthy diet, but entail varying social and environmental costs and benefits. Accordingly, the productive and socioeconomic context encompassing vegetable oils requires interdisciplinary research based on appropriate analyses of big data in populations undergoing emerging behavioral and environmental pressures. Since oils represent a major and growing source of energy at a global level, their role in sustainable nutrition should be considered beyond pure nutritional facts, at the light of soil preservation, local resources and human needs in terms of health, employment and socio-economic development.


Subject(s)
Diet , Plant Oils , Humans , Nutritional Status , Diet, Healthy , Health Status
6.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325105

ABSTRACT

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

7.
Front Nutr ; 9: 878644, 2022.
Article in English | MEDLINE | ID: mdl-35548568

ABSTRACT

Dietary fats are essential ingredients of a healthy diet. Their production, however, impacts the environment and its capacity to sustain us. Growing knowledge across multiple disciplines improves our understanding of links between food, health and sustainability, but increases apparent complexity. Whereas past dietary guidelines placed limits on total fat intake especially saturated fats, recent studies indicate more complex links with health. Guidelines differ between regions of general poverty and malnutrition and those where obesity is a growing problem. Optimization of production to benefit health and environmental outcomes is hindered by limited data and shared societal goals. We lack a detailed overview of where fats are being produced, and their environmental impacts. Furthermore, the yields of different crops, for producing oils or feeding animals, and the associated land needs for meeting oil demands, differ greatly. To illuminate these matters, we review current discourse about the nutritional aspects of edible fats, summarize the inferred environmental implications of their production and identify knowledge gaps.

8.
Front Nutr ; 9: 881465, 2022.
Article in English | MEDLINE | ID: mdl-35520286

ABSTRACT

Research in the field of sustainable and healthy nutrition is calling for the application of the latest advances in seemingly unrelated domains such as complex systems and network sciences on the one hand and big data and artificial intelligence on the other. This is because the confluence of these fields, whose methodologies have experienced explosive growth in the last few years, promises to solve some of the more challenging problems in sustainable and healthy nutrition, i.e., integrating food and behavioral-based dietary guidelines. Focusing here primarily on nutrition and health, we discuss what kind of methodological shift is needed to open current disciplinary borders to the methods, languages, and knowledge of the digital era and a system thinking approach. Specifically, we advocate for the adoption of interdisciplinary, complex-systems-based research to tackle the huge challenge of dealing with an evolving interdependent system in which there are multiple scales-from the metabolome to the population level-, heterogeneous and-more often than not- incomplete data, and population changes subject to many behavioral and environmental pressures. To illustrate the importance of this methodological innovation we focus on the consumption aspects of nutrition rather than production, but we recognize the importance of system-wide studies that involve both these components of nutrition. We round off the paper by outlining some specific research directions that would make it possible to find new correlations and, possibly, causal relationships across scales and to answer pressing questions in the area of sustainable and healthy nutrition.

9.
PLoS One ; 17(3): e0266178, 2022.
Article in English | MEDLINE | ID: mdl-35349594

ABSTRACT

Much concern about tropical deforestation focuses on oil palm plantations, but their impacts remain poorly quantified. Using nation-wide interpretation of satellite imagery, and sample-based error calibration, we estimated the impact of large-scale (industrial) and smallholder oil palm plantations on natural old-growth ("primary") forests from 2001 to 2019 in Indonesia, the world's largest palm oil producer. Over nineteen years, the area mapped under oil palm doubled, reaching 16.24 Mha in 2019 (64% industrial; 36% smallholder), more than the official estimates of 14.72 Mha. The forest area declined by 11% (9.79 Mha), including 32% (3.09 Mha) ultimately converted into oil palm, and 29% (2.85 Mha) cleared and converted in the same year. Industrial plantations replaced more forest than detected smallholder plantings (2.13 Mha vs 0.72 Mha). New plantations peaked in 2009 and 2012 and declined thereafter. Expansion of industrial plantations and forest loss were correlated with palm oil prices. A price decline of 1% was associated with a 1.08% decrease in new industrial plantations and with a 0.68% decrease of forest loss. Deforestation fell below pre-2004 levels in 2017-2019 providing an opportunity to focus on sustainable management. As the price of palm oil has doubled since the start of the COVID-19 pandemic, effective regulation is key to minimising future forest conversion.


Subject(s)
Arecaceae , COVID-19 , Agriculture , Conservation of Natural Resources , Forests , Humans , Indonesia , Palm Oil , Pandemics
10.
Curr Biol ; 32(8): 1754-1763.e6, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35276097

ABSTRACT

Conservation strategies are rarely systematically evaluated, which reduces transparency, hinders the cost-effective deployment of resources, and hides what works best in different contexts. Using data on the iconic and critically endangered orangutan (Pongo spp.), we developed a novel spatiotemporal framework for evaluating conservation investments. We show that around USD 1 billion was invested between 2000 and 2019 into orangutan conservation by governments, nongovernmental organizations, companies, and communities. Broken down by allocation to different conservation strategies, we find that habitat protection, patrolling, and public outreach had the greatest return on investment for maintaining orangutan populations. Given the variability in threats, land-use opportunity costs, and baseline remunerations in different regions, there were differential benefits per dollar invested across conservation activities and regions. We show that although challenging from a data and analysis perspective, it is possible to fully understand the relationships between conservation investments and outcomes and the external factors that influence these outcomes. Such analyses can provide improved guidance toward a more effective biodiversity conservation. Insights into the spatiotemporal interplays between the costs and benefits driving effectiveness can inform decisions about the most suitable orangutan conservation strategies for halting population declines. Although our study focuses on the three extant orangutan species of Sumatra and Borneo, our findings have broad application for evidence-based conservation science and practice worldwide.


Subject(s)
Endangered Species , Pongo , Animals , Conservation of Natural Resources , Indonesia , Pongo pygmaeus , Population Dynamics
11.
Front Vet Sci ; 8: 749547, 2021.
Article in English | MEDLINE | ID: mdl-34869722

ABSTRACT

Critically Endangered orangutans are translocated in several situations: reintroduced into historic range where no wild populations exist, released to reinforce existing wild populations, and wild-to-wild translocated to remove individuals from potentially risky situations. Translocated orangutans exposed to human diseases, including Coronavirus Disease 2019 (COVID-19), pose risks to wild and previously released conspecifics. Wildlife disease risk experts recommended halting great ape translocations during the COVID-19 pandemic to minimize risk of disease transmission to wild populations. We collected data on orangutan releases and associated disease risk management in Indonesia during the COVID-19 pandemic, and developed a problem description for orangutan disease and conservation risks. We identified that at least 15 rehabilitated ex-captive and 27 wild captured orangutans were released during the study period. Identified disease risks included several wild-to-wild translocated orangutans in direct contact or proximity to humans without protective equipment, and formerly captive rehabilitated orangutans that have had long periods of contact and potential exposure to human diseases. While translocation practitioners typically employ mitigation measures to decrease disease transmission likelihood, these measures cannot eliminate all risk, and are not consistently applied. COVID-19 and other diseases of human origin can be transmitted to orangutans, which could have catastrophic impacts on wild orangutans, other susceptible fauna, and humans should disease transmission occur. We recommend stakeholders conduct a Disease Risk Analysis for orangutan translocation, and improve pathogen surveillance and mitigation measures to decrease the likelihood of potential outbreaks. We also suggest refocusing conservation efforts on alternatives to wild-to-wild translocation including mitigating human-orangutan interactions, enforcing laws and protecting orangutan habitats to conserve orangutans in situ.

12.
Conserv Biol ; 35(6): 1833-1849, 2021 12.
Article in English | MEDLINE | ID: mdl-34289517

ABSTRACT

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.


RESUMEN: Reconociendo que era imperativo evaluar la recuperación de especies y el impacto de la conservación, la Unión Internacional para la Conservación de la Naturaleza (UICN) convocó en 2012 al desarrollo de una "Lista Verde de Especies" (ahora el Estatus Verde de las Especies de la UICN). Un marco de referencia preliminar de una Lista Verde de Especies para evaluar el progreso de las especies hacia la recuperación, publicado en 2018, proponía 2 componentes separados pero interconectados: un método estandarizado (i.e., medición en relación con puntos de referencia de la viabilidad de especies, funcionalidad y distribución antes del impacto) para determinar el estatus de recuperación actual (puntuación de recuperación de la especie) y la aplicación de ese método para estimar impactos en el pasado y potenciales de conservación basados en 4 medidas (legado de conservación, dependencia de conservación, ganancia de conservación y potencial de recuperación). Probamos el marco de referencia con 181 especies representantes de diversos taxa, historias de vida, biomas, y categorías (riesgo de extinción) en la Lista Roja de la IUCN. Con base en la distribución observada de la puntuación de recuperación de las especies, proponemos las siguientes categorías de recuperación de la especie: totalmente recuperada, ligeramente mermada, moderadamente mermada, mayormente mermada, gravemente mermada, extinta en estado silvestre, e inderterminada. Cincuenta y nueve por ciento de las especies se consideraron mayormente o gravemente mermada. Aunque hubo una relación negativa entre el riesgo de extinción y la puntuación de recuperación de la especie, la variación fue considerable. Algunas especies en las categorías de riesgo bajas fueron evaluadas como más lejos de recuperarse que aquellas con alto riesgo. Esto enfatiza que la recuperación de especies es diferente conceptualmente al riesgo de extinción y refuerza la utilidad del Estado Verde de las Especies de la UICN para comprender integralmente el estatus de conservación de especies. Aunque el riesgo de extinción no predijo el legado de conservación, la dependencia de conservación o la ganancia de conservación, se correlacionó positivamente con la potencial de recuperación. Solo 1.7% de las especies probadas fue categorizado como cero en los 4 indicadores de impacto de la conservación, lo que indica que la conservación ha jugado, o jugará, un papel en la mejoría o mantenimiento del estatus de la especie la gran mayoría de ellas. Con base en nuestros resultados, diseñamos una versión actualizada del marco de referencia para la evaluación que introduce la opción de utilizar una línea de base dinámica para evaluar los impactos futuros de la conservación en el corto plazo y redefine corto plazo como 10 años.


Subject(s)
Endangered Species , Extinction, Biological , Animals , Biodiversity , Conservation of Natural Resources , Ecosystem , Risk
14.
16.
PLoS One ; 16(1): e0238087, 2021.
Article in English | MEDLINE | ID: mdl-33395430

ABSTRACT

The Tapanuli Orangutan (Pongo tapanuliensis) is the most threatened great ape species in the world. It is restricted to an area of about 1,000 km2 of upland forest where fewer than 800 animals survive in three declining subpopulations. Through a historical ecology approach involving analysis of newspaper, journals, books and museum records from the early 1800s to 2009, we demonstrate that historically Pongo tapanuliensis inhabited a much larger area, and occurred across a much wider range of habitat types and at lower elevations than now. Its current Extent of Occurrence is 2.5% and 5.0% of the historical range in the 1890s and 1940s respectively. A combination of historical fragmentation of forest habitats, mostly for small-scale agriculture, and unsustainable hunting likely drove various populations to the south, east and west of the current population to extinction. This happened prior to the industrial-scale forest conversion that started in the 1970s. Our findings indicate how sensitive P. tapanuliensis is to the combined effects of habitat fragmentation and unsustainable take-off rates. Saving this species will require prevention of any further fragmentation and killings or other removal of animals from the remaining population. Without concerted action to achieve this, the remaining populations of P. tapanuliensis are doomed to become extinct within several orangutan generations.


Subject(s)
Conservation of Natural Resources/methods , Demography/trends , Population Dynamics/trends , Animals , Demography/statistics & numerical data , Ecosystem , Endangered Species/statistics & numerical data , Forests , Hominidae , Pongo , Population Density , Population Dynamics/statistics & numerical data
17.
Nat Plants ; 6(12): 1418-1426, 2020 12.
Article in English | MEDLINE | ID: mdl-33299148

ABSTRACT

Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils and, in particular, palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for ~40% of the current global annual demand for vegetable oil as food, animal feed and fuel (210 Mt), but planted oil palm covers less than 5-5.5% of the total global oil crop area (approximately 425 Mha) due to oil palm's relatively high yields. Recent oil palm expansion in forested regions of Borneo, Sumatra and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm's role in deforestation. Oil palm expansion's direct contribution to regional tropical deforestation varies widely, ranging from an estimated 3% in West Africa to 50% in Malaysian Borneo. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 2050. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation and livelihoods. Our Review highlights that although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. Greater research attention needs to be given to investigating the impacts of palm oil production compared to alternatives for the trade-offs to be assessed at a global scale.


Subject(s)
Agriculture/trends , Arecaceae/growth & development , Biodiversity , Conservation of Natural Resources/trends , Crops, Agricultural/growth & development , Palm Oil , Sustainable Growth , Agriculture/statistics & numerical data , Forecasting
18.
Bioscience ; 70(9): 794-803, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32973409

ABSTRACT

Threats to biodiversity are well documented. However, to effectively conserve species and their habitats, we need to know which conservation interventions do (or do not) work. Evidence-based conservation evaluates interventions within a scientific framework. The Conservation Evidence project has summarized thousands of studies testing conservation interventions and compiled these as synopses for various habitats and taxa. In the present article, we analyzed the interventions assessed in the primate synopsis and compared these with other taxa. We found that despite intensive efforts to study primates and the extensive threats they face, less than 1% of primate studies evaluated conservation effectiveness. The studies often lacked quantitative data, failed to undertake postimplementation monitoring of populations or individuals, or implemented several interventions at once. Furthermore, the studies were biased toward specific taxa, geographic regions, and interventions. We describe barriers for testing primate conservation interventions and propose actions to improve the conservation evidence base to protect this endangered and globally important taxon.

SELECTION OF CITATIONS
SEARCH DETAIL
...